Related Standards

BS 8500/BS EN 206

BS 8500: Concrete - Complementary British Standard to BS EN 206-12° replaced BS 5328 in December 2003 and designers should currently be using this to specify concrete. Further guidance can found in Chapter 11, originally published as How to use BS 8500 with BS 81102".

BS 4449/BS EN 10080

BS 4449: Specification for carbon steel bars for the reinforcement of concrete22 has been revised ready for implementation in January 2006. It is a complementary standard to BS EN 10080 Steel for the reinforcement of concrete23 and Normative Annex C of Eurocode 2. The most significant changes are that steel characteristic yield will change to 500 MPa. There are three classes of reinforcement, A, B and C, which indicate increasing ductility. Class A is not suitable for use where redistribution of 20% and above has been assumed in the design.

BS EN 13670

BS 8110 Part 1 sections 6 and 7 specify the workmanship for concrete construction. There is no equivalent guidance in Eurocode 2, and it is intended that execution (construction) will be covered in a new standard BS EN 13670 Execution of concrete structures24. This is still in preparation and is not expected to be ready for publication until 2008 at the earliest. In the intervening period the draft background paper to the UK National Annex of Eurocode 2, Part 1-1"° recommends that designers use the National structural concrete specification for building construction25, which refers to BS 8110 for workmanship.

Glossary of Eurocode terminology




Clauses that are general statements, definitions, requirements and analytical models for which no alternative is permitted. They are identified by (P) after the clause number.

Application Rules

These are generally recognised rules, which comply with the principles and satisfy their requirements.

Nationally Determined Parameter (NDP)

Eurocodes may be used to satisfy national Building Regulations, which themselves will not be harmonized. NDPs are therefore used to allow a country to set its own levels of safety. NDPs also allow certain other parameters (generally influenced by climate, geography and geology) to be left open for selection nationally: NDPs are advised in the National Annex.

National Annex (NA)

A National Annex accompanies each Eurocode and it contains a) the values of NDPs b) the national decision regarding the use of Informative Annexes and c) references to NCCIs


The term used for the text of Standards that forms the core requirements. Compliance with Eurocodes will generally be judged against the normative requirements.


A term used only in relation to annexes, which seek to inform rather than require.


Non-contradictory complementary information. References in a National Annex which contains further information or guidance which does not contradict the Eurocode.

Characteristic value

A value that may be derived statistically with a probability of not being exceeded during a reference period. The value corresponds to a specified fractile for a particular property of material or product. The characteristic values are denoted by subscript 'k' (e.g. Qk etc). It is the principal representative value from which other representative values may be derived.

Representative value

Value used for verification of a limit state. It may be the characteristic value or an accompanying value, e.g. combination, frequent or quasi-permanent.

Design values

These refer to representative values modified by partial factors. They are denoted by subscript 'd' (e.g.fcd = fck/gc; Qd = gq Qk).

Action (F)

Set of forces, deformations or accelerations acting on the structure.

Combination of actions

Set of design values used for the verification of the structural reliability for a limit state under the simultaneous influence of different and statistically independent actions.

Fixed action

Action that has a fixed distribution and position over the structure or structural member.

Free action

Action that may have various spatial distributions over the structure.

Permanent actions (C)

Actions that are likely to act throughout the life of the structure and whose variation in magnitude with time is negligible (e.g. permanent loads).

Variable actions (Q)

Actions whose magnitude will vary with time (e.g. wind loads).

Effect of action (E)

Deformation or internal force caused by an action.

Accidental action (A)

Action, usually of short duration but of significant magnitude, that is unlikely to occur on a given structure during the design working life.

Accompanying action

An action in a combination that is not the leading variable action.

Transient design situation

Design situation that is relevant during a period much shorter than the design working life of the structure.

Persistent design situation

Design situation that is relevant during a period of the same order as the design working life of the structure.

Accidental design situation

Design situation involving exceptional conditions of the structure.

Irreversible serviceability limit state

Serviceability limit state where some consequences of actions will remain when the actions are removed.

Reversible serviceability limit state

Serviceability limit state where no consequences of actions will remain when the actions are removed.


Construction of the works.

Greener Homes for You

Greener Homes for You

Get All The Support And Guidance You Need To Be A Success At Living Green. This Book Is One Of The Most Valuable Resources In The World When It Comes To Great Tips on Buying, Designing and Building an Eco-friendly Home.

Get My Free Ebook


  • remigio
    What eurocode replaced BS 5328?
    8 years ago

Post a comment