Make Money in the Recycling Business

Home Based Recycling Business

Make Money! Join the many individuals and families who are learning to prosper in the salvage and recycling business starting with little or no cash. You'll learn: How to bootstrap your business without going into debt. How to get your salvage for free or for pennies on the dollar. (In some cases you will be paid to take the material away). How to find the best price in the least amount of time. The tools and equipment you will need many easily fabricated. Information based on my experience in salvage, recycle and reuse in the following areas: Construction and building materials. Deconstruction and recycled lumber. Farm and ranch equipment and supplies. Heavy equipment salvaging for high value parts. Scrap metal ferrous and non-ferrous. Electronic, communication, and computer scrap and recycling. Salvage for alternative energy systems. Antiques and collectibles. Promoting and marketing. Always treating everyone with fairness and respect and not profiting from the misfortune of others ways to create win-win situations for All parties involved. How to deal with scrap and recycling dealers and brokers. Innovative businesses you can start using various salvaged materials. How to arrange transportation, interim storage, cheap yard space without dealing with high cost commercial operators. How to be paid for your work before you ever start. How to get the equipment and tools you need. How to stay solvent and operate on a cash basis. Read more...

Home Based Recycling Business Summary


4.6 stars out of 11 votes

Contents: Ebook
Author: Michael R. Meuser
Official Website:
Price: $27.00

Access Now

My Home Based Recycling Business Review

Highly Recommended

All of the information that the author discovered has been compiled into a downloadable book so that purchasers of Home Based Recycling Business can begin putting the methods it teaches to use as soon as possible.

If you want to purchase this e-book, you are just a click away. Click below and buy Home Based Recycling Business for a reduced price without any waste of time.

Air Flotation Systems

Porsche 911 Auto Heat Exploded View

Air flotation is one of the oldest methods for the removal of solids, oil & grease and fibrous materials from wastewater. Suspended solids and oil & grease removals as high as 99 + can be attained with these processes. Air flotation is simply the production of microscopic air bubbles, which enhance the natural tendency of some materials to float by carrying wastewater contaminants to the surface of the tank for removal by mechanical skimming. Many commercially available units are packaged rectangular steel tank flotation systems shipped completely assembled and ready for simple piping and wiring on site. Models typically range from 10 to over 1000 square feet of effective flotation area for raw wastewater flows to over 1000 gallons per minute. Complete systems often include chemical treatment processes. A dissolved air flotation (DAF) system can produce clean water in wash operations where reduction of oil and grease down to 2 mg 1 is achievable in certain applications. In addition to...

Basic Principles Of Water Treatment

Virtually all industries utilize water in their manufacturing process, either as a heat-transfer medium, as in the steam-electric generating industry or in the employment of cooling towers or as a product as in the case of beverages, foods and pharmaceutical preparations. Water is also employed as a working solvent, as in the case of manufacturing microelectronics, where the final product yield is highly dependent on the purity of the water. In addition, all manufacturing processes that employ water in their process, must also deal with a waste stream. Water treatment

The Sludge Pasteurization Process

Filter Press Sludge Treatment

In the United States procedures to reduce the number of pathogenic organisms are a requirement before sale of sludge or sludge-containing products to the public as a soil conditioner, or before recycling sludge to croplands. Since the final use or disposal of sludge may differ greatly with respect to health concerns, and since a great number of treatment options effecting various degrees of pathogen reduction are available, the system chosen for the reduction of pathogens should be tailored to the specific application. Thermal conditioning of sludge in a closed, pressurized system destroys pathogenic organisms and permits dewatering. The product generally has a good heating value or can be used for land filling or fertilizer base. In this process, sewage sludge is ground and pumped through a heat exchanger and sent with air to a reactor where it is heated to a temperature of 350-400 F. The processed sludge and air are returned through the heat exchanger to recover heat. The...

Recommended Resources For The Reader

Equipment manufacturers and engineering companies. The book is written as a training guide. It explains how to monitor and maintain RO systems. This knowledge is critical for the daily evaluation of RO system performance. The book goes on to cover various aspects of membrane cleaning and sanitization. It also discusses most of the common RO system problems that should be investigated when troubleshooting an RO concern. These topics make the book an excellent tool for technicians who maintain RO systems. Some of the more common and some of the more interesting applications of reverse osmosis are discussed in detail. These include two-pass RO for high-purity water production, pharmaceutical water treatment, seawater desalinization, application of RO for juice concentration, plating metal recycling, the treatment of secondary sewage effluent, and the final filtration of deionized (DI) water. For anyone who works with industrial RO systems, the book will provide practical insights into...

What Finally Happens To Sludge After Volume Reduction

Day, what we are left with is ultimate sludge. If we choose incineration, we still have a solid waste left to deal with, ash. If we choose another route to sludge volume reduction, we still have a solid waste residue to deal with. There is no ultimate destruction of sludge, only ultimate sludge that we are left with. The final engineering solution we need to devise is how to ultimately handle this waste. It simply boils down to whether we select a so-called pollution prevention related technology or a final disposal option for the solid waste. In the remaining sections we will explore the options available to us.

Wastewater Treatment Applications

In a very general sense, there are two types of wastewater flows - municipal and industrial. Although municipal wastewaters vary in composition, there are ranges of properties that enable filtration equipment to be readily selected and specified. This is not always the situation when treating industrial wastewater streams. The compositions and properties of industrial wastewaters vary significantly, and even within specific industry sectors, these flows can be dramatically different. This is important to realize because although filtration is a physical process, it depends upon and is integrally a part chemical treatment processes such as preconditioning, buffering and filter aid conditioning. These chemical treatment methods must be properly specified along with the filtration equipment itself in order to ensure that a properly designed filtration system is being applied. In applying these general criteria, one should focus on the intended application. In wastewater treatment...

The Final Touches To Water

To its highly alkaline nature as well as the heat that is generated as it reacts with the water in the sludge this also results in a drier product. A final disposal method which eliminates all of the pathogens and greatly reduces the volume of the sludge is incineration. This is not considered a beneficial use, however, and is becoming less popular due to public concerns over air emissions. Sludges from physical-chemical treatment of industrial waste streams containing heavy metals and non-biodegradable toxic organic compounds often must be handled as hazardous wastes. Some of these will end up in hazardous waste landfills, or may be chemically treated for detoxification- or even for recovery of some components for recycling. Recalcitrant organic compounds can be destroyed by carefully controlled high-temperature incineration, or by other innovative processes, such as high-temperature hydrogen reduction.

Sterilization Using Ozone

Generated from air, 4 kWh lb from oxygen, and 5.5 kWh lb from oxygen-recycling systems. Operating costs for air systems are essentially the electric power costs for oxygen systems the cost of oxygen (2 to 30 lb) must be added to the electrical cost. Capital costs of large integrated ozone systems are 300 to 400 a pound per day of ozone generated and 100 a pound per day of ozone for the generator alone. Actual uses of ozone include odor control, industrial chemicals synthesis, industrial water and wastewater treatment, and drinking water. Lesser applications appear in fields of combustion and propulsion, foods and pharmaceuticals, flue gas-sulfur removal, and mineral and metal refining. Potential markets include pulp and paper bleaching, power plant cooling water, and municipal wastewater treatment. The odor control market is the largest and much of this market is in sewage treatment plants. Use of ozone for odor control is comparatively simple and efficient. The application is for...

Revenues Expenses Profits

Revenue impacts must be closely examined. For example, companies often can cut wastewater treatment costs if water use (and, in turn, the resulting wastewater flow) is limited to nonpeak times at the wastewater treatment facility. However, this limitation on water use could hamper production. Consequently, even though the company's actions to regulate water use could reduce wastewater charges, revenue could also be decreased, unless alternative methods could be found to maintain total production. Conversely, a change in a production procedure as a result of a technology change could increase revenue. For example, moving from liquid to dry paint stripping can not only reduce water consumption, but also affect production output. Because clean-up time from dry paint-stripping operations (such as bead blasting) is generally much shorter than from using a hazardous, liquid based stripper, it could mean not only the elimination of the liquid waste stream (this is a pollution prevention...

Questions For Thinking And Discussing

A waste stream from a pulp mill has an average concentration of 7.2 Lbs of water Lbs of solids. A treatment plant to be designed will have a thickening stage that concentrates the stream to 1.8 Lbs of water Lbs of solids with the production of a relatively clear overflow. Batch settling tests were conducted on different concentration slurries to ensure that the velocity of settling exceeds the upward flow of fluid at all concentrations normally encountered in the thickening of the specified feed. Tabulated results from these tests are given below Prepare an additional column for this table showing the

Principles Of Ozone Effluent Treatment

Available and inexpensive, and began to displace ozone as a purifier in municipalities throughout the United States. Most ozone studies and development were dropped at this time, leaving ozonation techniques, equipment, and research at a primitive stage. Ozone technology stagnated, and the development and acceptance of ozone for water and wastewater treatment was discontinued. In addition to the popular use of chlorination as a wastewater disinfectant and the consequent technology lag in ozonation research, there was a third impediment to ozone commercialization the comparatively high cost of ozonation in relation to chlorination. Ozone's instability requires on-site generation for each application, rather than centralized generation and distribution. This results in higher capital requirements, aggravated by a comparatively large electrical energy requirement. Ozone's low solubility in water and the generation of low concentrations, even under ideal conditions, also necessitates more...

Ion Exchange And Carbon Adsorption

After World War II technology advances were made in developing coal based granular activated carbons with a substantial content of transport pore structure and good mechanical hardness. This combination allowed the use of activated carbon in continuous decolourisation processes resulting superior performance. In addition optimization of granular carbon reactivation was achieved. Today many users are switching from the traditional use of powdered activated carbon as a disposable chemical to continuous adsorption processes using granular activated carbon combined with reactivation. By this change they are following the modem tendency towards recycling and waste minimization, thereby reducing the use of the world's resources. In this chapter we will explore the use of activated carbon in standard water treatment applications.

Industrial Water And Wastewater Treatment

The markets for ozone in industrial water and wastewater treatment are quite small. Industrial applications for ozone could grow. The use of ozone for treating photoprocessing solutions is a novel application that has been limited, but might grow. In this process, silver is recovered electrolytically then the spent bleach baths of iron ferrocyanide complexes are ozonated. Iron cyanide complexes are stable to ozonation so that the ferrous iron is merely oxidized to ferric, which is its original form. Thus, the bleach is regenerated and is ready for recycling and reuse by the photoprocessor.

Biosolids Regulations

EPA has developed comprehensive federal biosolids use and disposal regulations , which are organized in five parts. These parts are general provisions, land application, surface disposal, pathogens and vector attraction reduction, and incineration. Parts of the regulations which address standards for land application, surface disposal, and incineration practices consist of general requirements, pollutant limits, operational requirements, management practices, frequency of monitoring, recordkeeping, and reporting requirements for biosolids processing facilities to abide by. Regulatory considerations play a key role in determining how to efficiently use sludge. The EPA has adopted a sludge management policy intended to encourage the beneficial use of sludge while protecting public health and the environment. The EPA's recent revisions of the Clean Water Act part 503 regulations promote the beneficial use of clean sludge that contain low levels of pollutants, sludge of...

An Overview Of The Options

The solids that result from wastewater treatment may contain concentrated levels of contaminants that were originally contained in the wastewater. A great deal of concern must be directed to the proper disposal of these solids to protect environmental considerations. Failure to do this may result in a mere shifting of the original pollutants in the waste stream to the final disposal site where they may again become free to contaminate the environment and possibly place the public at risk. A more reasonable approach to ultimate solids disposal is to view the sludge

Pollution Prevention Options

There are concerns that land application of sludge will result in an increase of pathogenic bacteria, viruses, parasites, chemicals and metals in drinking water reservoirs, aquifers, and the food chain. This raises additional concerns of cumulative effects of metals in cropped soils. Research shows that if metals such as zinc, copper, lead, nickel, mercury, and cadmium are allowed to build up in soils due to many applications of sludges over the years, they could be released at levels harmful to crops, animals, and humans. While some of these metals are necessary micronutrients, at higher levels they may be harmful to plants, particularly those grown on acid soils (soils with a low pH). Cadmium, a suspected carcinogen, and mercury cause even greater concern because of their toxic effects on animals and humans. Likewise, synthetic organic compounds such as dioxins and PCBs, if present, cause concern about ecological and human health impacts. The degree of risk depends directly on the...

What Sludge Is

While sewage sludge is rich in nutrients and organic matter, offering the potential for applications as a biosolid (discussed below) or it has a heating value making it suitable for incineration, many industrial sludges are often unsuitable for reuse. A more common practice with industrial sludge is to try and identify a reclaim value i.e., if the sludge can be concentrated sufficiently there may be a portion of this waste which is reclaimable or may enter into a recycling market.


The presence of various inorganic and organic substances in a digester can cause inhibition or toxicity. Heavy metals, light metal cations, oxygen, sulfides and ammonia are potential toxic materials. The best method of controlling digester toxicity is to prevent the toxic materials from entering the system. A strong industrial waste ordinance which is enforced is the ideal solution. The cause of toxicity should be identified. Temporary relief from toxicity may be achieved by (I) increasing the mixing the dilute and disperse the toxic material

Key Words

Carbon adsorption-Carbon adsorption is a technology that has been used widely in the drinking water treatment industry, and that is being used with increasing frequency in the wastewater and hazardous waste industry. The process takes advantage of the highly adsorptive properties of specially prepared carbon known as activated carbon. The porous structure of the carbon provides a large internal surface area onto which organic molecules may become attached. Many organic substances, including chlorinated solvents, PCBs, PAHs, pesticides, and others, may be removed from solution using carbon adsorption. Carbon adsorption is achieved by passing water residues through one or more columns containing granular activated carbon operated in parallel or in series. Carbon columns may be operated in either an upflow (expanded bed) or a downflow (fixed bed) mode. In theory, spent carbon may be regenerated. In practice, however, spent carbon must frequently be discarded, especially if high...

Going Green For More Cash

Going Green For More Cash

Stop Wasting Resources And Money And Finnally Learn Easy Ideas For Recycling Even If You’ve Tried Everything Before! I Easily Found Easy Solutions For  Recycling Instead Of Buying New And Started Enjoying Savings As Well As Helping The Earth And I'll Show You How YOU Can, Too! Are you sick to death of living with the fact that you feel like you are wasting resources and money?

Get My Free Ebook