## Utilization Factor Structural Design

The design is unacceptable if the degree of utilization is gt 100 Traditional factor of safety against piping The soil's critical hydraulic gradient is i crit - 1 Factor of safety on hydraulic gradient is F - 3.38 w 0 The degree of utilization using expression 2.9 a is close to 100 , whereas using 2.9 b it is less than 50 . Eurocode 7 does not explicitly state where the partial factors should be applied, which leads to the discrepancy between these expressions, which was not anticipated by the...

## The Structural Eurocode programme

The Structural Eurocodes are a suite of ten standards for the design of buildings and civil engineering works, as illustrated in Figure 1.1 and Plate 2 in the book's colour section . These standards are divided into fifty-eight parts and are accompanied by National Annexes issued by the various European countries that have introduced the Eurocodes into their design practice. Figure 1.1. Standards within the Structural Eurocodes programme. See Plate 2 for colour version. Figure 1.1. Standards...

## Active Earth Pressure

Curve 1 on each graph shows the results obtained for a serviceability limit state calculation, with all partial factors set to 1.0 - i.e. with all parameters at their characteristic values. The depths of embedment needed to ensure stability for this situation are 9.63m and 7.00m respectively for the two walls. Curve 2 shows the results obtained when passive earth pressures are treated as an unfavourable action, as allowed by the Single-Source Principle discussed in Chapter 3. A single partial...

## Eurocode Retaining Wall Stem Design Example

The worked examples in this chapter consider the design of a T-shaped gravity wall retaining dry fill under undrained conditions Example 11.1 the same wall under drained conditions Example 11.2 the same wall again, retaining wet fill under drained conditions Example 11.3 and a mass concrete wall retaining granular fill Example 11.4 . Specific parts of the calculations are marked O, , , etc., where the numbers refer to the notes that accompany each example. 11.11.1 T-shaped gravity wall...

## Eurocode 7 Worked Examples

The worked examples in this chapter consider the design of a pad footing on dry sand Example 10.1 the same footing but eccentrically loaded Example 10.2 a strip footing on clay Example 10.3 and, for the same footing, verification of the serviceability limit state Example 10.4 . Specific parts of the calculations are marked O, , , etc., where the numbers refer to the notes that accompany each example. Example 10.1 considers the design of a simple rectangular spread footing on dry sand, as shown...