Outline of the book

Chapter 1 introduces the various Structural Eurocodes, the links between them, and their timetable for publication. This chapter places the Eurocodes into the wider landscape of standards development not only by the European Committee for Standardization (CEN), but also by the International Standards Organization (ISO) and various national standards bodies, such as the British Standards Institution (BSI) and its German counterpart, Deutsches Institut für Normung (DIN).

Chapter 2 discusses the basis of structural design, as set out in the Structural Eurocodes. It reviews the contents of the 'head' Eurocode (EN 1990) in some detail, including topics such as: requirements; assumptions; Principles and Application Rules; principles of limit state design; design situations; ultimate limit states EQU, STR, and FAT; serviceability limit states; actions, combinations, and effects; material properties and resistance; geometrical data; structural analysis and design by testing; and verification by the partial factor method. The chapter concludes with worked examples involving a shear wall under combined loading, loads on a pile group supporting an elevated bridge deck, and the results of compression tests on concrete cylinders.

Chapter 3 presents the general rules for geotechnical design that are set out in Eurocode 7 Part 1, including: design requirements, complexity of design, and geotechnical categories; limit states; actions and design situations; design and construction considerations; geotechnical design by calculation, prescriptive measures, testing, and observation; supervision, monitoring, and maintenance; and the Geotechnical Design Report.

Chapter 4 discusses ground investigation and testing as described in Eurocode 7 Part 2, including: planning ground investigations; spacing and depth of investigation points; identification and classification of soil and rock; soil and rock sampling; groundwater measurements; field tests in soil and rock; laboratory tests in soil and rock; and testing of geotechnical structures. The chapter concludes with worked examples covering ground investigation for a hotel complex, including specification of field work, borehole logging, and specification of laboratory tests.

Chapter 5 reviews the immensely important topic of ground characterization, including: deriving geotechnical parameters from correlations, theory, and empiricism; obtaining the characteristic value; and statistical methods for ground characterization (pros and cons). The chapter concludes with worked examples that illustrate the statistical determination of parameters for Thames Gravel, Singapore Marine Clay, and London and Lambeth Clays.

Chapter 6 to 8 discuss the verification of strength (ultimate limit states GEO and STR), stability (EQU, UPL, and HYD), and serviceability (serviceability limit states). After reviewing the basis of design, each chapter focuses on how Eurocode 7 introduces reliability into the design and then discusses particular aspects of that verification. Chapter 6 explains the three Design Approaches introduced in Eurocode 7; Chapter 7 demonstrates the similarity of the EQU, UPL, and HYD limit states; and Chapter 8 reviews ways of determining settlement. Chapter 7 concludes with worked examples that illustrate the subjects covered (worked examples for strength and serviceability appear later, in Chapters 9-14).

Chapters 9 to 14 deal with the design of particular geotechnical structures: 9, slopes and embankments; 10, footings; 11, gravity walls; 12, embedded walls; 13, piles; and 14, anchorages. Each chapter deals with the topic in a similar manner, discussing the required levels of ground investigation; design situations and limit states; basis of design; design methods and the application of partial factors; serviceability; and issues related to supervision, monitoring and maintenance. A key feature of all these chapters is a set of worked examples that illustrate the application of Eurocode 7 to common problems and highlights some of the ambiguities in the use of partial factors.

Chapter 15 describes the contents of the series of European Standards that have been published under the generic title Execution of special geotechnical works, covering bored piles, displacement piles, micropiles, sheet pile walls, diaphragm walls, ground anchors, reinforced fill, soil nailing, grouting, jet grouting, deep mixing, deep vibration, and vertical drainage.

Chapter 16 introduces the two key geotechnical reports that are defined in Eurocode 7: the Ground Investigation Report (GIR) and the Geotechnical Design Report (GDR). Also in this chapter is a discussion of other reports that contribute to the GIR, such as drilling and sampling records, field investigation reports, and laboratory test reports. The chapter also includes a comparison with existing practice.

The final chapter, Chapter 17, summarizes the impact that the EN Eurocodes - and Eurocode 7 in particular - will have on existing design practice.

The book concludes with three Appendices that give charts for slope stability design (Appendix 1), earth pressure coefficients (Appendix 2), and notes on the worked examples (Appendix 3).

Included at the end of a number of chapters in this book are a series of worked examples that illustrate the application of Eurocode 7 to common geotechnical design situations. To help you work through these examples, we have provided in Appendix 3 some notes explaining their format and notation. We recommend that you read the notes before studying the worked examples in detail.

0 0

Post a comment