Wastewater Treatment Applications

Subsequent chapters address the application of filtration techniques to wastewater treatment in some detail. For now, only some general comments and terminology are introduced as part of this introductory chapter.

In a very general sense, there are two types of wastewater flows - municipal and industrial. Although municipal wastewaters vary in composition, there are ranges of properties that enable filtration equipment to be readily selected and specified. This is not always the situation when treating industrial wastewater streams. The compositions and properties of industrial wastewaters vary significantly, and even within specific industry sectors, these flows can be dramatically different. This is important to realize because although filtration is a physical process, it depends upon and is integrally a part chemical treatment processes such as preconditioning, buffering and filter aid conditioning. These chemical treatment methods must be properly specified along with the filtration equipment itself in order to ensure that a properly designed filtration system is being applied.

Filtration equipment selection can be complex not only because of the wide variations in suspension properties, but also because of the sensitivities of suspension and cake properties to different process conditions and to the variety of filtering equipment available. Generalities in selection criteria are, therefore, few; however, there are some guidelines applicable to certain classes of filtration applications. One example is the choice of a filter whose flow orientation is in the same direction as gravity when handling polydispersed suspensions. Such an arrangement is more favorable than an upflow design, since larger particles will tend to settle first on the filter medium, thus preventing pores from clogging within the medium structure.

A further recommendation, depending on the application, is not to increase the pressure difference for the purpose of increasing the filtration rate. The cake may, for example, be highly compressible; thus, increased pressure would result in significant increases in the specific cake resistance. We may generalize the selection process to the extent of applying three rules to all filtration problems:

1. The objectives of a filtration operation should be defined;

2. Physical and/or chemical pretreatment options should be evaluated for the intended application based on their availability, cost, ease of implementation and ability to provide optimum filterability; and

3. Final filtration equipment selection should be based on the ability to meet all objectives of the application within economic constraints.

In applying these general criteria, one should focus on the intended application. In wastewater treatment applications, filtration can be applied at various stages. It can be applied as a pretreatment method, in which case the objective is often to remove coarse, gritty materials from the waste-stream. This is a preconditioning step for waste waters which will undergo further chemical and physical treatment downstream.

Filtration may also serve as the preparatory step for the operation following it. The latter stages may be drying or incineration of solids, concentration or direct use of the filtrate. Filtration equipment must be selected on the basis of their ability to deliver the best feed material to the next step. Dry, thin, porous, flaky cakes are best suited for drying where grinding operations are not employed. In such cases, the cake will not ball up, and quick drying can be achieved. A clear, concentrated filtrate often aids downstream treatment, whereby the filter can be operated to increase the efficiency of the downstream equipment without affecting its own efficiency.

Filtration may also be applied as a part of the final stages of treatment in the process. This is most commonly referred to as a polishing operation. Indeed, filtration may be applied both as pretreatment and polishing stages, and even as an intermediate stage in the wastewater treatment process. Filtration equipment selection depends upon the specific operation that the equipment must perform. Proper pH control can result in clarification that might otherwise not be feasible, since an increase in alkalinity or acidity may change soft, slimy solids into firm, free-filtering ones. In some cases precoats are employed, not because of the danger of filter cloth clogging, but to allow the use of a coarser filter medium, such as metallic cloth.

Project Earth Conservation

Project Earth Conservation

Get All The Support And Guidance You Need To Be A Success At Helping Save The Earth. This Book Is One Of The Most Valuable Resources In The World When It Comes To How To Recycle to Create a Better Future for Our Children.

Get My Free Ebook

Post a comment